A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

نویسندگان

  • A. A. I. Peer
  • A. Gopaul
  • M. Z. Dauhoo
  • M. Bhuruth
چکیده

We propose a new fourth-order non-oscillatory central scheme for computing approximate solutions of hyperbolic conservation laws. A piecewise cubic polynomial is used for the spatial reconstruction and for the numerical derivatives we choose genuinely fourth-order accurate non-oscillatory approximations. The solution is advanced in time using natural continuous extension of Runge-Kutta methods. Numerical tests on both scalar and gas dynamics problems confirm that the new scheme is non-oscillatory and sharper than existing fourth-order central schemes when solving profiles with discontinuities. Experiments on nonlinear Burgers’ equation indicate that our scheme is superior to existing fourth-order central schemes in the sense that the total variation of the computed solutions are closer to the total variation of the exact solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Central WENO schemes for hyperbolic systems of conservation laws

We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous ext...

متن کامل

High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedr...

متن کامل

New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws

We discuss an extension of the Jiang–Tadmor and Kurganov–Tadmor fully-discrete non-oscillatory central schemes for hyperbolic systems of conservation laws to unstructured triangular meshes. In doing so, we propose a new, ‘‘genuinely multidimensional,” non-oscillatory reconstruction—the minimum-angle plane reconstruction (MAPR). The MAPR is based on the selection of an interpolation stencil yiel...

متن کامل

Third order nonoscillatory central scheme for hyperbolic conservation laws

A third-order accurate Godunov-type scheme for the approximate solution of hyperbolic systems of conservation laws is presented. Its two main ingredients include: 1. A non-oscillatory piecewise-quadratic reconstruction of pointvalues from their given cell averages; and 2. A central differencing based on staggered evolution of the reconstructed cell averages. This results in a third-order centra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008